A Novel Multi-Scale Adversarial Networks for Precise Segmentation of X-Ray Breast Mass
نویسندگان
چکیده
منابع مشابه
Adversarial Deep Structural Networks for Mammographic Mass Segmentation
Mass segmentation is an important task in mammogram analysis, providing effective morphological features and regions of interest (ROI) for mass detection and classification. Inspired by the success of using deep convolutional features for natural image analysis and conditional random fields (CRF) for structural learning, we propose an end-to-end network for mammographic mass segmentation. The n...
متن کاملNeural Networks for X-Ray Image Segmentation
The work described here is part of Intelligent Multi-Agent Image Analysis System, which is being developed to promote the automated diagnosis and classification of digital images. Image analysis by content continues to be a challenging problem. Model-based approaches have met with some success in domains where objects can be well described using geometric primitives, but such explicit models ar...
متن کاملBranched Generative Adversarial Networks for Multi-Scale Image Manifold Learning
We introduce BranchGAN , a novel training method that enables unconditioned generative adversarial networks (GANs) to learn image manifolds at multiple scales. What is unique about BranchGAN is that it is trained in multiple branches, progressively covering both the breadth and depth of the network, as resolutions of the training images increase to reveal finer-scale features. Specifically, eac...
متن کاملA Novel Method for Skin Lesion Segmentation
Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...
متن کاملA Novel Method for Skin Lesion Segmentation
Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2999198